The DS-37 is a member of the DS series of Electric Encoders[™], based on Netzer Precision proprietary technology. The Electric Encoder[™] offers many advantages - some unparalleled

- Low profile (8 mm)
- Hollow, floating shaft
- No bearings or other contacting elements
- High resolution and precision
- High tolerance to temperature extremes, shock, moisture, EMI, RFI and Magnetic fields
- Very low weight
- Holistic signal generation
- Analog or Digital interfaces

General

Angular resolution	17 bits ; 131,072 CPR
Maximum tested static error	≤ 0.025°
Maximum operational speed	1,500 rpm
Measurement range	Unlimited rotation
Power On - Max. operational speed	3.3 RPM, <=20°/sec
Build In Test BIT	Optional

Mechanical

Allowable mounting eccentricity	±0.1 mm
Allowable rotor axial motion	±0.1 mm
Rotor inertia	71.62 gr · mm²
Total weight	10 gr
Outer Ø /Inner Ø/ Height	37 / 10 / 8 mm
Material (stator, rotor)	Ultem™ polymer

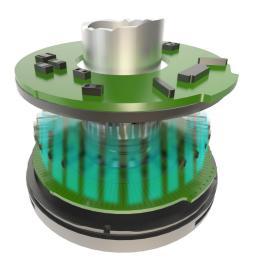
The Electric EncoderTM is unique in being holistic, i.e., its output reading is the averaged outcome of the whole area of the rotor, This feature makes the Electric EncoderTM forgiving to mounting tolerances, mechanical wander etc.

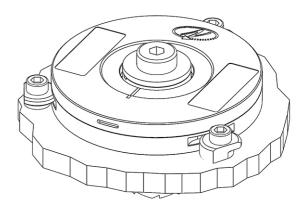
The absence of components such as ball bearings, flexible couplers, glass disc, light sources and detectors, along with very low power consumption makes the Electric Encoder $^{\text{TM}}$ virtually failure free.

The internally shielded, DC operated Electric Encoder $^{\text{TM}}$ includes an electric field generator, a field receiver, a sinusoidal shaped dielectric rotor, and processing electronics.

The output signals of Electric Encoder $^{\text{TM}}$ are analog Sine / Cosine representing the rotation angle. The digital outputs are obtained by further processing - which may be either internal or external to the encoder.

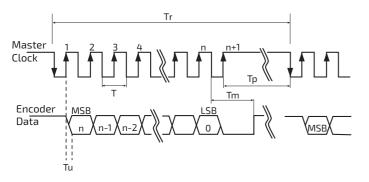
The combination of precision, low profile, low weight and high reliability have made Netzer Precision encoders particularly suitable to a wide variety of critical applications including, but not limited to medical equipment and aerospace.

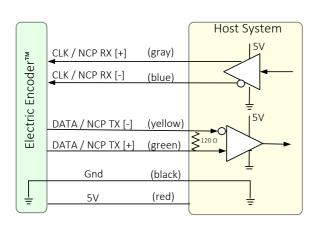

Electrical


Supply voltage	5V ± 5%
Interconnection	Shielded cable or
Cable Length	1,500 mm MAX

Environmental

IEC 6100-6-2, IEC 6100-6-4
Digital: -40°C to +85°C
98% Non condensing
100 g for 11 ms
20 g 10 – 2000 Hz
IP 40



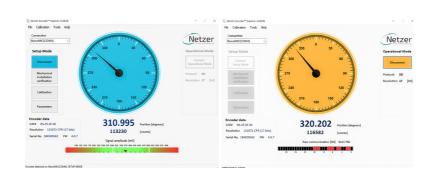


Digital SSi Interface

Synchronous Serial Interface (SSI) is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations
n	Total number of data bits	12 - 22
Т	Clock period	
f= 1/T	Clock frequency	0.5 - 2.0 MHz
Tu	Bit update time	200 nsec
Тр	Pause time	26 - ∞ µsec
Tm	Monoflop time	>25 µsec
Tr	Time between 2 adjacent requests	Tr > n*T+26 µsec
fr=1/Tr	Data request frequency	

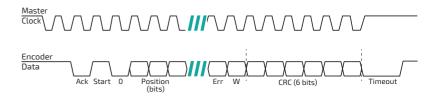
SSi / BiSS Output signal parameters


~250 µSec	
Binary	
Differential RS-422	
Differential RS-422	
0.5 ÷ 2.0 MHz	
30 KHz	
180 mA	
25 μSec	

SSi / BiSS interface wires color code

Clock +	Grey	Clock
Clock -	Blue	Clock
Data -	Yellow	Data
Data +	Green	Data
GND	Black	Ground
+5V	Red	Power supply

Software tools: (SSi / BiSS - C)

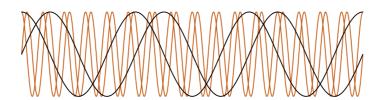

Advanced calibration and monitoring options are available by using the factory supplied <u>Electric Encoder Explorer software</u>, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

Digital BiSS-C Interface

BiSS – C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode) .The BiSS-C interface as the SSi is based on RS-422 standards.

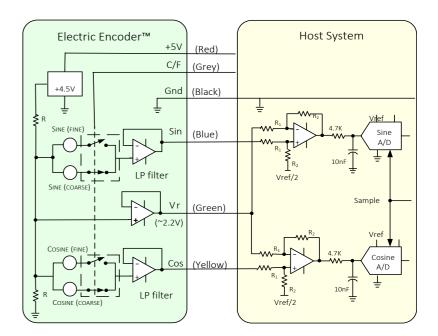
bit#	bit # Description		Default	Length
27	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
26	Start	Encoder signal for "start" data transmit	1	1 bit
25	"0"	"start" bit follower	0	1 bit
824	AP	Absolute Position encoder data		
7	Error	Error (amplitude levels)	1	1 bit
6	Warn.	Warning (non active)	1	1 bit
05	CRC	The CRC polynomial for position, error and warning data is: $x6 + x1 + x0$. It is transmitted MSB first and inverted. The start bit and "0" bit are		6 bits
		omitted from the CRC calculation.		
	Timeout	Elapse between the sequential "start"request cycle's.		25 µs

Analog Interface


Coarse and Fine channels

The DS-37 has two operational modes: a Coarse-mode and a Fine-mode - equivalent to two separate encoders in a common housing. The modes are selectable by a logic C/F command; logic "0" (0V to +0.5V) selects the Coarse-mode, which has 3 Electrical Cycle/Revolution (EC/R) while logic "1" (+3V to +5V) selects the Fine-mode which has $16 \, \text{EC/R}$.

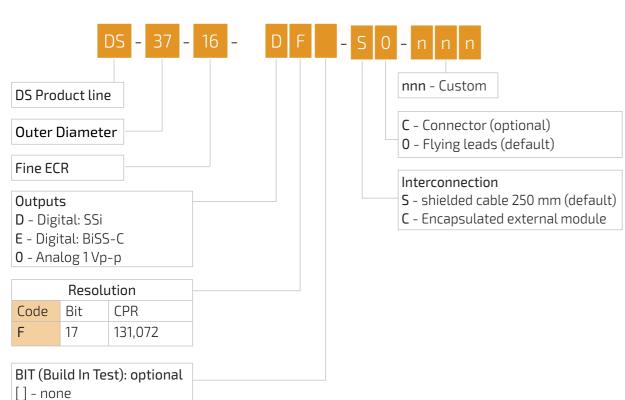
The switching time is less than 1 ms.


The Coarse-mode outputs need to be read only upon system initiation after which the encoder is permanently switched to the Fine mode. Coarse and Fine sine / cosine pairs are used to calculate the initial absolute position, from that point tracking the Fine-channel outputs provides the absolute mechanical rotation angle with the specified accuracy and resolution.

All output signals are referenced to an internally generated voltage $Vr(\sim 2.25V)$

Output Signal Parameters

Electric Cycles (Fine / Coarse channels)	16 / 3
Signal latency	250 µSec
Fine-mode output noise (DC to 1kHz)	100 μV (p-p)
Fine-mode output amplitude	±400mV ± 20%
Coarse-mode output amplitude	±300mV ± 20%
Phase relationship	Sine leads Cosine
(CW shaft rotation - seen from top)	Sille teaus Cosille
Signal bandwidth	DC to 1 kHz
Current consumption	10mA


Analog interface wires color code

1	GND	Black	Ground	
2	C/F	Grey	Coarse / Fine	
3	Sine	Blue	Sine signal	
4	Vr	Green	V referenceCosine signal	
5	Cosine	Yellow	Cosine signal	
6	+5V	Red	P.S.	

Absolute Position calculation

The analog Sine / Cosine outputs convey the Electrical angle of the Coarse or Fine signals. The Absolute mechanical angle is computed by digitizing the analog signals.

Ordering Code

Pair#

2

Color

Red / Black

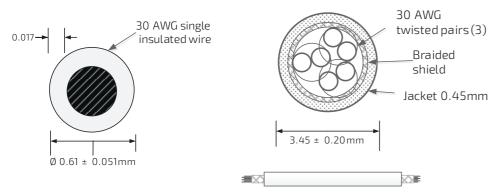
Gray / Blue

Green / Yellow

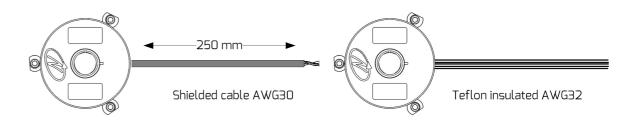
Netzer Cat No.: CB-00014

B - BIT

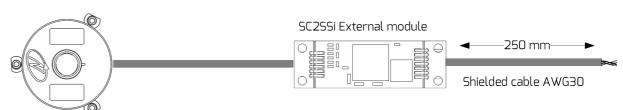
Provider: Ray-Q USA. wire CAT No: RQ213210

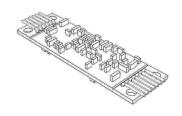

Cable: 30 AWG twisted pair (3):2 (30 AWG 25/44 finned copper,

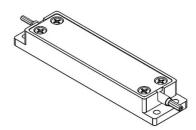
 $0.15 \text{ PFE to } \emptyset \ 0.6 \pm 0.05 \ \text{OD}).$


Temperature rating: -60 to +150 Deg C.

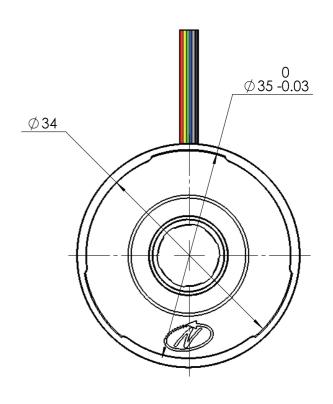
Braided shield: Thinned copper braided 95% min. coverage.


Jacket: 0.45 silicon rubber jacket 03.45 ± 0.2 OD


Analog Output



Digital Output SSi / BiSS-C


Related documents

DS-37 User Manual: Mechanical, Electrical and calibration setup.

Optional Accessories

Demonstration Kit

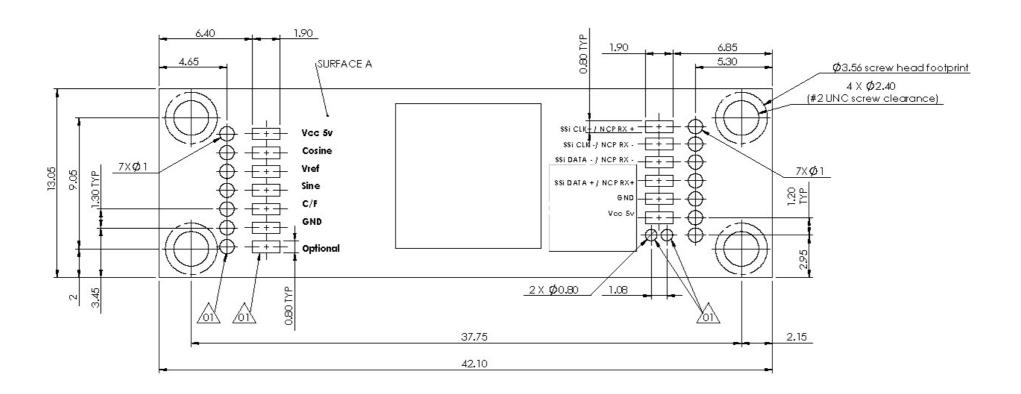
DS-37DKIT-01: Includes, mounted encoder on rotary jig, and RS-422 to USB converter.

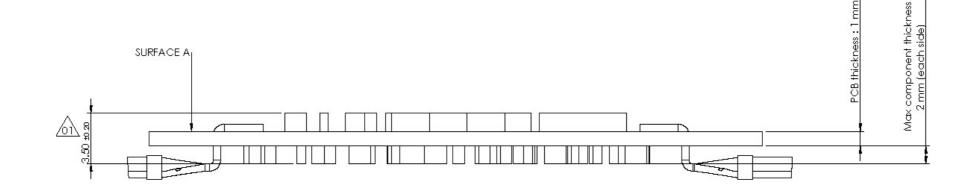
ENCODER BOTTOM VIEW

WARNING

Do not use Loctite or other glues containing Cyanoacrylate. We recommend to use 3M glue - Scotch-Weld™ Epoxy Adhesive EC-2216 B/A.

WARNING


Adhesive EC-2216 B/A.


Do not use Loctite or other glues containing Cyanoacrylate.

We recommend to use 3M glue - Scotch-Weld™ Epoxy

Critical dimensions marked with "*"

SC2SSi, DS-37 external digital module (SSi/BiSS)

No	o Part		Description	QTY.	
1	SC2SSi-03	Included		with DS-37 CAT No.	1