The VLP-60 is a member of the VLP series of Electric Encoders™ a product line based on Netzer Precision Position Sensor proprietary technology. EE products are characterized by features that enable unparalleled performance:

- Low profile (<6 mm)
- Hollow shaft (Stator / Rotor)
- No bearings or other contact elements
- High resolution and unparalleled precision
- High tolerance to temperature extremes, shock, moisture, EMI, RFI and magnetic fields
- Very low weight
- Holistic signal generation
- Digital interfaces for absolute position

General

Angular resolution	18-20 bit
Maximum tested static error	±0.015°
Extended accuracy static error	±0.010°
Maximum operational speed	4,000 rpm
Measurement range	Single turn, unlimited
Rotation direction	Adjustable CW/CCW*

^{*} Default same direction from bottom side of the encoder

Mechanical

Allowable mounting eccentricity	±0.1 mm
Allowable axial mounting tolerance	±0.1 mm
Rotor inertia	1,930 gr · mm²
Total weight	16 gr
Outer Ø /Inner Ø/ Height	60 / 25/ 6 mm
Material (stator, rotor)	FR4
Nominal air gap (stator, rotor)	0.6 mm

The holistic structure of the Electric Encoder[™] makes it unique: Its output reading is the averaged outcome of the entire area of the rotor. This feature allows the EE a tolerant mechanical mounting and to deliver outstanding precision.

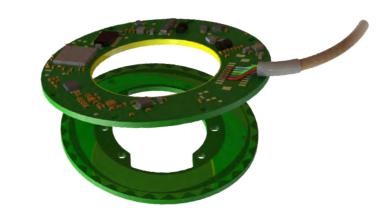
Due to the absence of components such as ball bearings, flexible couplers, glass discs, light sources and detectors along with very low power consumption enables the EE to deliver virtually failure-free performance in nearly all types of conditions.

The internally shielded, DC operated EE includes an electric field generator, a field receiver, sinusoidal-shaped dielectric rotor, and processing electronics.

The EE output is a digital serial synchronous with absolute position single turn.

This combination of high precision, low profile and, low weight has made Netzer precision encoders highly reliable and particularly well suited to a wide variety of industrial automation applications.

Electrical

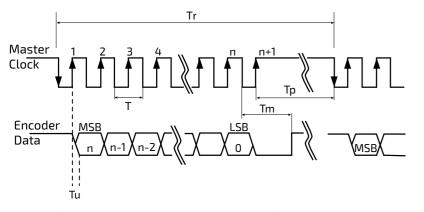

Supply voltage	5V ± 5%	
Current consumption	<90 mA	
Interconnection	Cable (standard 250mm)	

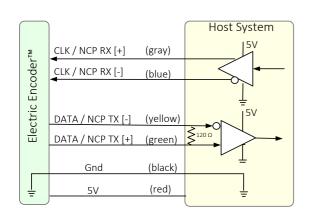
Environmental

IEC 6100-6-2, IEC 6100-6-4
-40°C to +85°C
-40°C to +125°C
98% Non condensing
100 g for 11 ms
20 g 10 – 2000 Hz
IP 40

Calibration / Compensation

Offsets	Automatic / Manual
Signals level	Automatic / Manual
Signals integrity	Error / Warning report
Thermal	Error / Warning report
Zero position	Manual





Digital SSi Interface

Synchronous Serial Interface (SSi) is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations	
n	Total number of data bits	12 - 22	
T Clock period			
f= 1/T	Clock frequency	0.1 - 5.0 MHz	
Tu	Bit update time	90 nsec	
Тр	Pause time	26 - ∞ µsec	
Tm	Monoflop time	>25 µsec	
Tr Time between 2 adjacent reque		Tr > n*T+26 μsec	
fr=1/Tr Data request frequency			

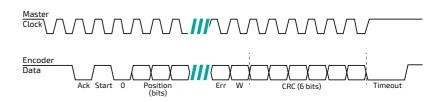
SSi / BiSS output signal parameters

Output code	Binary	
Serial output	Differential RS-422	
Clock	Differential RS-422	
Clock frequency	0.1 ÷ 5.0 MHz	
Position update rate	35 kHz (Optional - up to 375 kHz)	

SSi / BiSS interface wires color code

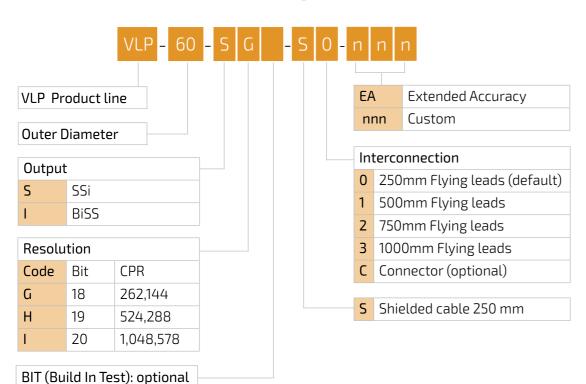
Clock + / NCP RX +	Grey	Clash	
Clock - / NCP RX -	Blue	Clock	
Data - / NCP TX -	Yellow	Data	
Data + / NCP TX +	Green	Data	
GND	Black	Ground	
+5V	Red	Power supply	

Software tools: (SSi / BiSS - C)


Advanced calibration and monitoring options are available by using the factory supplied Electric Encoder Explorer software, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

Digital BiSS-C Interface

BiSS – C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode). The BiSS-C interface as the SSi is based on RS-422 standards.


Bit #		Description	Default	Length
27	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
26	Start	Encoder signal for "start" data transmit	1	1 bit
25	"0"	"start" bit follower	0	1 bit
824	AP	Absolute Position encoder data		
7	Error	Error (amplitude levels)	1	1 bit
6	Warn.	Warning (non active)	1	1 bit
05	CRC	The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.		6 bits
	Timeout	Elapse between the sequential "start"request cycle's.		25 μs

None

BIT

В

Ordering Code

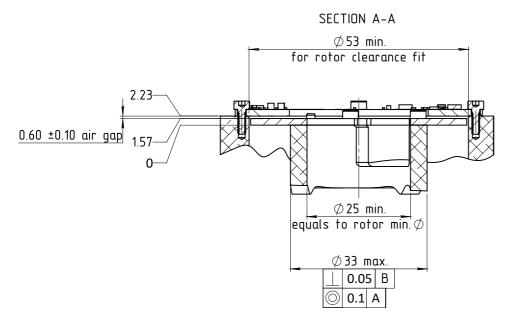
Cable Information

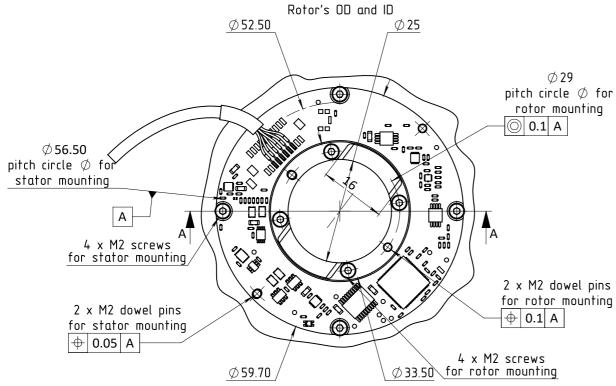
Cable: 30 AWG twisted pair (3): 2 (30 AWG 25/44 tinned copper, Insulation: PFE \emptyset 0.15 to \emptyset 0.6 \pm 0.05 OD) Temperature rating: -60 to +150 Deg C Braided shield: Thinned copper braided 95% min. coverage Jacket: 0.44 silicon rubber (NFA 11-A1) Ø3.45 ±0.2 OD

Pair#	Color	30 AWG twisted pairs (3)
A1-A2	Red / Black	0.017→ → 30 AWG single insulated wire
A3-A4	Gray / Blue	Braided shield
A5-A6	Green / Yellow	Jacket 0.44mm
= X		Ø 3.45 ±0.2 mm

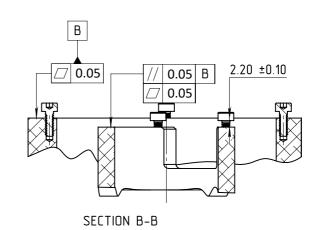
Related Documents

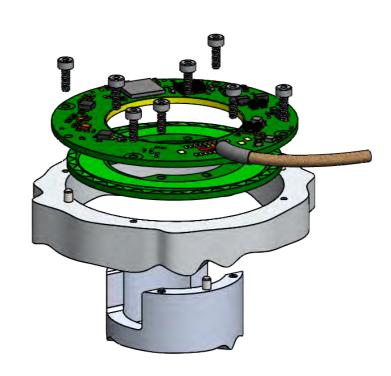
VLP-60 User Manual: Mechanical, Electrical and calibration setup.


Optional Accessories


Demonstration Kit

DKIT-VLP-60-SG-S0 - SSi interface


DKIT-VLP-60-IG-S0 - BiSS interface


The demo-kit includes: mounted encoder on rotary jig, and RS-422 to USB converter.

Stator's OD and ID

	Unless Otherwise Specified	
	Dimensions are in: mm	Surface finish: N6
Linear tolerances		
	0.5-4.9: ±0.05 mm	5-30: ±0.1 mm
	31-120: ±0.15 mm	121-400: ±0.2 mm